Córdoba

Un modelo predice la demanda de agua para el riego con una semana de antelación

Con una semana de antelación y un error inferior al 20 por ciento

Publicidad AiPublicidad Ai
Publicidad Ai
Publicidad Ai
Publicidad AiPublicidad Ai
Publicidad Ai
Publicidad AiPublicidad Ai
  • Los investigadores. -

El Departamento de Agronomía de la Universidad de Córdoba (UCO) ha desarrollado el primer modelo de predicción de la demanda de agua en ofrecer pronósticos con una semana de antelación y un error inferior al 20 por ciento.

Según informa la UCO en una nota, la tecnología es una aliada esencial para la comunidad agrícola en el contexto actual atravesado por la búsqueda de una gestión eficiente de los recursos que respete el medioambiente y ofrezca estrategias para hacer frente a épocas de escasez de agua o sequía.

El desarrollo de nuevas herramientas y la digitalización del regadío permiten a los regantes tener el control sobre el uso de recursos como el agua y la energía, ahorrando costes y usando sólo el agua necesaria en cada momento.

Un paso más en esta digitalización que permita una gestión más precisa del agua y la energía es el que ha dado el equipo formado por los investigadores Emilio Camacho, Rafael González y Juan Antonio Rodríguez de la Unidad de Excelencia María de Maeztu-Departamento de Agronomía de la Universidad de Córdoba (Dauco) junto a la investigadora Irene Fernández del Departamento de Ingeniería Eléctrica, desarrollando un modelo que usa la inteligencia artificial para predecir el agua que gastará la comunidad de regantes a una semana vista.

"La gran diferencia con respecto a modelos anteriores es que es la primera vez que se hace a una escala de siete días vista", ha señalado el investigador Rafael González al hablar de este modelo que combina tecnologías como la lógica difusa o varios centenares de redes neuronales. Esta 'arquitectura neuronal', de hecho, tiene más de un millón y medio de parámetros.

Es una construcción compleja que para el usuario será sencilla ya que "otra de las cuestiones importantes es que utiliza solo cuatro variables: temperatura media, evapotranspiración de referencia, humedad y registros anteriores de riego", ha explicado el investigador.

Por tanto, el gestor de la comunidad de regantes que implante esta tecnología sólo tendrá que introducir sus registros de riego de la semana previa, temperatura media, evapotranspiración de referencia y humedad y el modelo pone a trabajar su arquitectura para devolverle la previsión del agua que utilizarán los regantes a una semana vista, con un error de menos del 20 por ciento, otra de las ventajas que presenta este modelo.

Esos son los resultados de la prueba de esta tecnología que se puede utilizar en un ordenador corriente y que ha sido verificada en el sector 2 de la Comunidad de Regantes del Zújar, donde el modelo además del bajo error ha conseguido reproducir hasta un 94 por ciento de los escenarios planteados.

"El conocimiento de la demanda de agua con varios días de antelación facilitará el manejo del sistema y ayudará a optimizar el uso del agua y los costes de la energía", ha apuntado también Juan Antonio Rodríguez. No sólo la gestión del agua mejora, sino que al conocer lo que se va a gastar en una semana se pueden tomar mejores decisiones también en cuestiones de energía ya que son muchas las comunidades de regantes que están instalando plantas fotovoltaicas y tener el pronóstico de demanda les permitirá "jugar combinando energía convencional y energía solar".

Se trata de una estrategia de gestión que también revertirá, no solo en costes, sino en el medio ambiente.

La investigación de este grupo ha evolucionado desde métodos básicos de telemedida y telecontrol del riego, pasando por pronósticos a corto plazo en los que se usa inteligencia artificial para conocer en qué periodo regarán los usuarios hasta llegar a estas previsiones que, por primera vez, pronostican a una semana vista.

La tecnología que lo ha hecho posible es un nuevo modelo híbrido (llamado 'LSTMHybrid'), una arquitectura neuronal elegida por el equipo porque está especialmente diseñada para predicciones en series temporales y que introduce la memoria, es decir, son capaces de retener cierta información de la que recibiendo y usarla luego para predecir la demanda.

Este modelo ayuda, de forma interna a conocer cómo funciona la comunidad ya que muchas veces el riego no sólo está relacionado con las necesidades teóricas del cultivo "sino que influyen las prácticas culturales de los regantes o su sensación térmica", ha explicado Juan Antonio Rodríguez. Y por eso la memoria del modelo va cambiando y adaptándose a lo que más importa en cada estación.

"El conocimiento está y la tecnología se ha probado y funciona, ahora hay que desarrollar la herramienta que permita a las comunidades usar esta tecnología de manera sencilla, que las empresas que vaya a hacer la solución tecnológica a la comunidad de regantes introduzca estos avances", ha concluido Emilio Camacho.

TE RECOMENDAMOS

ÚNETE A NUESTRO BOLETÍN